The case against new developments in the North Sea

The North Sea hydrocarbon reserves are among the most expensive and most technically difficult in the world. They are also short-medium life reserves compared with larger landmass oilfields.

Anticipating these disincentives, the incoming Labour governments of 1964-69 and 1974-79 with the state-owned BNOC and British Gas companies decided to make them more attractive for licenced operators by zero valuing to hydrocarbon assets thus avoiding the usual auction bidding process that would entail up-front purchase and risk acceptance by prospective extraction companies.

Then taxation rates on oil/gas extracted were relaxed to a very minimum as an incentive subsidy on future exploration and extraction activities. These arrangements- along with wholesale privatisation in 1980- meant that high profits were assured at low taxation rates and with the burden of risk and asset write-off being shouldered entirely by the taxpayer.

Also, these arrangements allowed for profligate extraction with value worthless assets being frittered away when the operational conditions got too difficult.

Unlike Norway– and many other oil and gas nation-states, no sovereign wealth fund was created on the back of oil/gas profit taxes- which in the case of Norway, has resulted in the biggest such fund for social welfare and public infrastructure in the world. So with Scottish territorial waters accounting for over 70% of UK oil and gas fields, little in the way- other than employment- of benefit has resulted/been accrued for the Scottish people.

Now Climate Change imperatives are bearing-down on all countries signed up to the IPOCC targets on carbon emissions targets- but yet ALL reliable sources producing estimates on oil (in particular) output and demand/consumption set targets well above limits required to bring about anything like a global temperature slow-down.

Also, the estimates for Scottish offshore- and fracked gas onshore- extraction fly clearly in the face of the Scottish government targets for a green neutral to zero-economy by 2030.

And also, also, it is clear that despite over 40 years of offshore hydrocarbon extraction- the living standards of the Scottish population- already low in comparison with much of the EU as well as many regions of the UK as a whole- have continued to fall and have continued downwards while the offshore company profits have continued upwards.  Essentially we have had subsidies and tax breaks for the rich oil companies and merciless market rigour for the poorest consumers.

Global oil prices (to which gas is pegged) continue to be volatile- but with an OPEC cartel of some 20 countries which are hydrocarbon exporting economic mono-cultures- future price wars- like the one in 2014 which saw 75,000 job losses in the North Sea- make any future dependence on the industry both a climate change folly and an economically ruinous strategy.

Oil and gas over-production is already upon us and any future development- such as the West of Shetland fields- is both unsustainable AND a waste of opportunities to create a green and socially equitable political economy for Scotland.

Dr Brian Parkin, Senior research fellow (Energy Economics), Leeds University

February 2020.

StatfjordA(Jarvin1982)Image CC0 StatfjordA (Jarvin1982).jpg

 

Energy efficient housing

The announcement by Paul Wheelhouse that the Scottish government will work on new regulations to ensure that new homes use renewable or low carbon energy sources for heating is a small but welcome step in the right direction.  However, the timescale for action is disappointingly unambitious; the new measures are not planned to be implemented until 2024.  Setting a much shorter deadline would send a message to private sector builders and local authorities that ‘climate emergency’ is exactly what it says. In housing, as elsewhere, action needs to be take place on the shortest time lines possible.

Let’s up the pressure for a mass public programme of retrofitting existing houses to be energy efficient.  This is a necessary step and in addition the climate jobs and the improvements in living conditions that it would generate would have a massive impact on people’s attitude to the climate emergency and what needs to be done.  It would be just transition in practice.

Passivhaus_section_en

Passive House, Image CC BY SA 3.0

Energy from Waste

On of the issues that came up in discussion at the recent Scot.E3 conference was ‘Energy from Waste’.  There is large-scale investment in this technology taking place across the UK.  We agreed to produce a briefing on the topic.  What follows is the text of the first draft of the briefing.  We are also developing further resources that will be added to the Resources page on this site.  We’d welcome comments on the text and ideas for useful resources that we could link to.

There are a large number of Energy from Waste (EFW) projects planned across the UK.  By the end of 2017 there were nearly 120 EFW proposals at various planning stages. Sixteen of these are in Scotland. In this briefing we take a critical look at Energy from Waste and ask whether it has a place in a strategy for a zero carbon Scotland.

Energy from Waste Projects

At first sight, the term ‘Energy from Waste’ appears to be all things green. It suggests a new and rational way of ‘treating’ the ever-growing mountains of waste that are an inevitable by-product of our throwaway society.  It invites the idea of a ‘green energy’ that has been derived from what would otherwise be a possibly harmful and long-term environmental problem. When the alternatives proposed are either a long-term toxic and smelly and unsightly landfill problem or a health-threatening incineration route, then EFW appears to be a sensible choice.

Behind the EFW hype, which many UK local authorities have accepted, there is a fog of confusion regarding the most optimal waste management solutions; whether they be recycling or minimising the production of waste at source – both options are ruled out by market driven/low cost and value-for-money economics.

Landfill

Since 1945 the volume of disposable waste per household in the UK has multiplied threefold. Over the years, the local authorities have traditionally chosen landfill disposal as the preferred waste ‘treatment’ route.  However, landfill, demands considerable land acreage and depth and entails significant public health risks as well as potentially long-term hazards for the environment. Aside from smell and vermin nuisance, landfill sites- even the best managed ones- constitute over time- a high risk of biological and toxin leaching into surface soils and ground-waters.  Methane from decomposition also adds to greenhouse gas emissions.

For all of these reasons, waste management authorities have either been incentivised away from landfill by grants for recycling- or more often – ‘disincentivised’ in the way of increasingly punitive landfill taxes. First introduced in the 1970’s, landfill taxes have been subsequently reinforced by EU directive-and as alternative waste ‘treatment’ technologies have fallen in capital cost, so landfill taxes have risen.

landfill-879437_960_720

Landfill tax per tonne

2010      £63.00

2018      £88.95

2019-20 £94.15

Tax policies make EFW-type waste treatment strategies appear attractive- particularly because in exchange for a penalty for handling waste, there is an income from generating electricity.

EFW technologies

There are a number of EFW technologies on offer but all share the same objective of converting solid (or in some cases, liquid/sludge) waste into energy for the production of electricity.

Typically, an EFW plant is based on an incinerator chamber into which is fed solid waste.  The upper walls of the chamber comprise water-filled tubes in which super-heated steam is produced for a steam turbine that in turn produces electricity.

Steam is also captured from the waste feed system. If the plant is fitted with what is called a ‘back-pressure’ steam turbine, then high-pressure hot water can be distributed to local industrial and residential heating networks in what is called a Combined Heat and Power (CHP) system.

However, as such plant is typically fed unsorted, or semi-sorted waste with a low calorific value, the combustion process will be ‘boosted’ with an additional combustion element in the form of natural gas or diesel oil. Less typical EFW technologies with little application to date, are the various gasification processed that involve the digestion of biological waste- usually food or agricultural wastes which are then converted into a ‘bio-gas’ which via a gas turbine is converted into a higher electricity output. In some processes, the waste is heat-treated anaerobically – i.e. in low oxygen conditions- (pyrolysis) to produce a synthetic ‘natural’ gas.

All EFW systems discharge exhaust gases. The principal emission is carbon dioxide but there are also emissions of nitrogen dioxide.  Quenching water can contain uncombusted toxins and  solid wastes in the form of light ash or clinker have to be disposed of safely.

5668478_c75f25e1_1024x1024

Image M J Richardson, CC BY-SA 2.0 https://www.geograph.org.uk/photo/5668478

Renewable energy?

EFW systems add greenhouse gases to the atmosphere through the process itself and also through large-scale transport of waste to the incinerators (mostly by road).  They are a response to the perceived problem of landfill rather than tackling systems that produce unrecyclable waste.  To operate efficiently EFW plants require a continuing supply of waste at or around current levels.  Scotland produces around 1.6 million tonnes of combustible municipal waste per year, if current plans come to fruition this means and awful lot of capacity chasing a very finite amount of waste. Local authorities could be tied in to contracts to supply waste for the next thirty or forty years.   This could pose a real threat to the commitment to recycle plastics and other recoverable materials out of the waste treatment stream. The Scottish Environmental Protection Agency notes that EFW is not a renewable energy source but claims that because it can be substituted for fossil fuel electricity production it forms an important part of the Scottish Strategy for sustainable energy!

DSC03194

Alternative Strategy needed

Energy from Waste is not green and not sustainable.  It undermines attempts to reuse and recycle and it has a significant carbon footprint through transport of waste to centralised sites and through the greenhouse emissions from the burning of waste.

Investment in Energy from waste should be reallocated to genuinely sustainable technologies aimed at cutting greenhouse gas emissions, which also provide opportunities for jobs in construction and better opportunities for long-term employment.

Further reading

For further information on Energy from Waste go to www.scote3.wordpress.com and click on the Resources tab in the menu.  This briefing is one in a series produced by Scot.E3.

More on BECCS and geoengineering

A few days ago we published Scot.E3’s Briefing #10 on Bioenergy with Carbon Capture and Storage (BECCS).  In the briefing we take a critical view of BECCS.  A newly published book by Holly Jean Buck – ‘After Geoengineering’ (Verso 2019) takes a more positive view. As a contribution to the debate on this important issue we republish (with permission) a detailed review and critique of ‘After Geoengineering’ from the PeopleandNature blog.  The review concludes by noting that

The best way to challenge corporations and governments is to make this discussion our own, rather than their property. Then we will be better armed in battles over political choices that we hope not only to influence, but to take into our hands. 

Geoengineering: let’s not get it back to front

We need to talk about geoengineering. Badly. To do so, I suggest two ground rules.

First, when we imagine futures with geoengineering, whether utopian or dystopian, let’s talk about the path from the present to those futures.

Second, if society is to protect itself from dangerous global warming, it will most likely combine a whole range of different methods; there is no silver bullet. So we need to discuss geoengineering together with other actions and technologies, not in isolation.

In After Geoengineering, Holly Buck urges social movements and climate justice militants to engage with geoengineering, rather than rejecting it. She questions campaigners’ focus on mitigation, i.e. on measures such as energy conservation and renewable electricity generation that reduce greenhouse gas emissions.

ccs-protest

Civil society groups protesting at the UN climate talks in Lima, Peru, in 2014, when fossil fuel companies organised sessions on carbon capture and storage. Photo by Carol Linnitt from the DeSmog Blog.

Buck offers a clear, jargon-free review of technologies, from afforestation and biochar that some climate campaigners embrace, to solar radiation management, the last word in technofixes that is broadly reviled. She intersperses her narrative with fictional passages, warning of the pitfalls of “mathematical pathways or scenarios, behind which are traditions of men gaming our possible futures” (p. 48).

But one of Buck’s key arguments – that we will reach a point where society will collectively “lose hope in the capacity of current emissions-reduction measures to avert climate upheaval”, and “decide that something else must be tried” (pp. 1-2) – cuts right across both my ground rules.

Buck asks: are we at the point […] where “the counterfactual scenario is extreme climate suffering” and therefore “it is worth talking about more radical or extreme measures [than mitigation]”, such as geoengineering? “Deciding where the shift – the moment of reckoning, the desperation point – lies is a difficult task” (p. 4).

This is a false premise, in my view, for three reasons.

First: we can not, and will not for the foreseeable future, perceive this “desperation point” as a moment in time. For island nations whose territory is being submerged, for indigenous peoples in the wildfire-ravaged Amazon, for victims of hurricanes and crop failures, the point of “extreme climate suffering” has already passed. For millions in south Asian nations facing severe flooding, it is hovering very close. For others living on higher ground, particularly in the global north, it may not arrive for years, perhaps even decades. If we take action, it will hopefully never arrive in its more extreme forms. This slow-burning quality of climate crisis is one of the things that makes it hard to deal with.

Second: at no point in the near future will “we” easily be able to take decisions on geoengineering – particularly the large-scale techniques – collectively. Political fights over geoengineering are pitting those with power and wealth against the common interest, and it’s hard to see how it could be otherwise.

Buck writes: “There will be a moment where ‘we’, in some kind of implied community, decide that something else [other than mitigation] must be tried” (p. 2). But she doesn’t probe who this “we” is, or spell out the implications of the fact that, in the class society in which we live, power is appropriated from the “implied community” by the state, acting in capital’s interests.

We can only decide, to the extent that we challenge their power. We can not free technologies from that context without freeing ourselves from it.

Third: the political fights actually unfolding are not about “geoengineering vs extreme climate suffering”, but about “geoengineering vs measures to cut greenhouse gas emissions”.

Carbon capture and storage (CCS) is lauded by the fossil fuel industry as an alternative to cutting fossil fuel use; Bioenergy with carbon capture and storage (BECCS) is included in the Intergovernmental Panel on Climate Change (IPCC) scenarios in order to cover up governments’ failure to reduce emissions; research funds that go to technofixes such as ocean fertilisation and solar radiation management (SRM), that sit easily with centralised state action, do not go to decentralised technologies that have democratic potential.

Buck believes that, despite these current clashes, we can uncover ways of using geoengineering for the common good. For example, she writes of expensive and unproven techniques for direct removal of carbon from the atmosphere:

We have to move from reflexive opposition of new technologies toward shaping them in line with our demands and alternative visions (p. 206).

Shape technologies in line with our visions of a socially just society? Yes, certainly. Start with direct carbon removal or CCS? Absolutely not.

We should focus, first, on technologies that produce non-fossil energy, and those that cut fossil fuel use in first-world economies and the energy-intensive material suppliers in the global south that feed them. We need also to understand technologies of adaptation to a warmed-up world (e.g. flood defences and how they can work for everyone, and not just the rich).

old-testament

On the global climate strike, 20 September, in London

As for technologies that suck carbon from the atmosphere, if they can be used in the common interest at all, it should be a matter of principle that “soft” local technologies (e.g. afforestation and biochar) be researched and discussed in preference to big interventionist technologies like SRM.

I will expand these arguments with reference to three themes: (1) the current treatment of geoengineering techniques by governments and companies; (2) whether, and why, we should start with “soft” and local technologies, as opposed to big ones; and (3) how we might compare geoengineering with mitigation technologies.

Geoengineering, states and companies

The dangers inherent in Buck’s approach are nowhere clearer than with CCS. This technique extracts carbon dioxide from wherever it is emitted, e.g. power stations’ smokestacks, with “scrubbers” (often using adsorbent chemicals). The CO2 is then trapped, liquefied and transported to a site nearby to be stored.

CCS was developed by oil companies more than 40 years ago in the USA, as a technique for Enhanced Oil Recovery (EOR), i.e. squeezing extra barrels of oil out of a depleting reservoir. The captured carbon is pumped into oil reservoirs to increase the pressure, and increase the volume of oil that could be pumped to the surface.

More recently, CCS has been used to trap carbon dioxide emissions at power stations and other industrial sites. But it is so complex, and so expensive, that its supporters say it can not yet be applied at large scale. It has never lived up to decades of talk about its potential.

Buck, displaying a super-optimism that strains credibility, writes:

Perhaps industry’s failure to make use of this technology could even be an opportunity to redirect it for more progressive ends (p. 124).

Linking it with biofuel production is “an opportunity to appropriate this group of techniques for redistributive ends” – which would require “an appetite for paying for and living with expensive infrastructure – and for making bright, clear distinctions regarding how and why it is built” (p. 127).

Who will steer the introduction of geoengineering techniques? Buck argues that:

If there’s no progressive vision about how to use CCS, […] the oil companies can essentially take us hostage (p. 203).

To advance an alternative vision to the companies’ would require a price on carbon, she argues (p. 204); a discussion about nationalising oil companies (p. 206); and a movement to demand carbon removal from the state, linking it to an end to subsidies for fossil fuels (p. 207).

This logic is back-to-front. 

CCS, unlike renewable electricity generation and a string of proven mitigation technologies, will require years of development before it can work at large scale and in a manner that makes any economic sense.

Moreover, CCS’s function is to remove carbon dioxide already produced by economic activity.

So in every situation, the first question to ask about it is: is there not a way to avoid emitting the carbon dioxide in the first place?

Let’s imagine an optimistic scenario, in which, in a western oil producing country, e.g. the USA or UK, a social democratic or left-leaning government, committed to serious action on climate change, is elected. The oil companies find themselves fighting a desperate battle to protect their practices and profits; a progressive, working-class movement seeks to control and contain them.

That movement will surely put stopping fossil fuel subsidies at the top of its list of demands. Some sections of it might demand carbon taxes (and some oil companies are already reconciled to these). At best, some of the oil companies will be nationalised.

But then we will surely face struggle over what to do with the funds freed up by an end to subsidies, and what to do with companies over which the state has taken control. Should funds be invested in CCS development? Or in proven technologies that can slash fossil fuel demand? Should oil companies be directed to use their engineering capacity to develop CCS? Or to use it to complete the decarbonisation of electricity generation and start working on other economic sectors?

wa_parrish_eor-850x501

Carbon Capture and Storage with Enhanced Oil Recovery. From the Power Engineering International web site

If there is a situation where CCS research would be preferred, I can not imagine it. And Buck didn’t spell one out in her book.

One difficulty I had with Buck’s argument is that in a crucial section on CCS (pp. 133-137), she discusses it together with direct capture of carbon dioxide from the atmosphere, a different technique (also currently too expensive to be operable at any scale). Her interest in the latter relates to a possible future need to draw carbon dioxide down from the atmosphere more rapidly than can be done with other “softer” technologies (biochar, afforestation, etc).

This is something we might have to worry about in many years’ time, and I don’t want to speculate about it now.

If there is a situation where CCS research would be preferred, I can not imagine it. And Buck didn’t spell one out in her book.

One difficulty I had with Buck’s argument is that in a crucial section on CCS (pp. 133-137), she discusses it together with direct capture of carbon dioxide from the atmosphere, a different technique (also currently too expensive to be operable at any scale). Her interest in the latter relates to a possible future need to draw carbon dioxide down from the atmosphere more rapidly than can be done with other “softer” technologies (biochar, afforestation, etc).

This is something we might have to worry about in many years’ time, and I don’t want to speculate about it now.

But Buck sees both technologies as a way of reforming oil companies, in the course of implementing a Green New Deal in the USA, i.e. as a current political issue. Direct air capture could “breach the psychic chain between CCS and fossil fuels”, she suggests (p. 127).

Now? Or in many years’ time? After our movement has grown strong enough to stop fossil fuel subsidies, or even to nationalise oil companies? Or before? Timing and sequencing matter.

Given that CCS and direct air capture are both monstrously expensive and many never work at scale, and given the emergency nature of climate action, proven mitigation and renewable electricity generation technologies should be our priority. That’s the quickest way of reducing the amount of greenhouse gases in the atmosphere. If that doesn’t fit with oil companies as presently constituted, tough on them.

The other potential use of CCS that Buck discusses is in conjunction with bioenergy (BECCS). CCS with fossil-fueled processes only saves the carbon those processes have produced, and is at best carbon-neutral. BECCS is seen as potentially carbon-negative, i.e. it could leave the atmosphere with less carbon than it started with. Plants naturally capture carbon as they grow; if they are used for fuel, with CCS, that carbon is also captured and stored.

BECCS is unproven to work at scale, in part because it would need massive amounts of land to grow the crops, presenting a potential threat to hundreds of millions of people who live by farming.

The principal practical use of BECCS so far has been by the IPCC: by including wildly exaggerated estimates of BECCS use, they have made their scenarios for avoiding dangerous climate change add up, without too rapid a transition away from fossil fuels.

This use – or rather, misuse – of BECCS has provoked outrage from climate scientists since the IPCC’s fifth assessment report was published in 2014. (See e.g. here.)

One team of climate scientists who double-checked the calculations, led by Sabine Fuss at the Mercator Research Institute in Berlin, concluded that the IPCC projections of BECCS’s potential was probably between twice and four times what is physically possible.

The best estimates Fuss and her colleagues could make for the sustainable global potential of negative emission technologies were: 0.5-3.6 billion tonnes of carbon dioxide removal per year (GtCO2/yr) for afforestation and reforestation, 0.5-5 GtCO2/yr for BECCS, 0.5-2 GtCO2/yr for biochar, 2-4 GtCO2/yr for enhanced weathering, 0.5-5 GtCO2/yr for direct air capture of carbon and 0-5 GtCO2/yr for soil carbon squestration.

Fuss and her colleagues wrote that they share “the widespread concern that reaching annual deployment scales of 10-20 GtCO2/yr via BECCS at the end of the 21st century, as is the case in many [IPCC] scenarios, is not possible without severe adverse side effects.”

And that’s putting it in polite, scholarly language.

Buck does not discuss this dispute, perhaps the sharpest public rift between the IPCC and the climate scientists on whose work it relies. She only comments in passing that, to answer why the concept of BECCS has any life in it, “possible answers include” that “modelers needed a fix for the models, and BECCS seemed the most plausible” (p. 64). That’s wildly understated.

Further on, Buck speculates that “deployment [of BECCS] at climate-significant scales would be a massive feat of social engineering”, which would imply “a different politics” under which people who live on and work the land own the resources for production (pp. 68-69).

Again, this argument is back-to-front. 

I embrace the idea of speculating about a post-capitalist future in which industrial agriculture, along with other monstrosities, has been overcome. And I would not exclude the idea that BECCS in some form might be part of it. But long before we get to that stage, there is the current battle to be fought: we need to join with the many honest climate scientists who have denounced the fraudulent use of BECCS in the IPCC’s scenarios; to expose its use as a cover for pro-fossil-fuel government policies; and address the climate policy priorities those governments seek to avoid. Now, BECCS is not one of these.

Big and small, “hard” and “soft”

The geoengineering technologies discussed by Buck range from those that are by their nature local, small-scale and “soft”, to the largest, “hardest” technologies such as SRM. At the furthest “soft” end is biochar, a process by which biomass (crop residues, grass, and so on) is combusted at low temperatures (pyrolysis) to make charcoal, which can be mixed into soils or buried, to store the carbon. Afforestation is also on the “soft” end of the scale, as are some ocean farming techniques. Buck also points to some significant local, if not “soft”, techniques, such as engineering specific glaciers to prevent them from melting (pp. 247-248).

directaircapture-2-768x428

Direct Air Capture, used with Enhanced Oil Recovery. Cartoon from the GeoEngineering monitor web site

Buck is sceptical of some claims made for the potential of afforestation, and I am too. But her appeals to social movements to engage, instead, with big and “hard” technologies left me unconvinced.

“The shortcomings of large infrastructure projects have generated suspicion about megaprojects, suspicion which may be transferred to solar geoengineering” (p. 45), she writes. Quite rightly so, I say.

Degrowth advocates, Buck complains, believe that “technologically complex systems beget technocratic elites: fossil fuels and nuclear power are dangerous because sophisticated technological systems managed by bureaucrats will gradually become less democratic and egalitarian” (p. 160). The belief that big technological systems “result in a society divided into experts and users […] limits the engagement of degrowth thinking with many forms of carbon removal, which is unfortunate” (p. 161).

What about the substantial issue? Don’t sophisticated technological systems managed by bureaucrats really become less democratic and egalitarian? Aren’t the degrowth advocates right about that? Hasn’t nuclear power, for example, shown us that?

Arguments similar to Buck’s about geoengineering techniques – that, if they were controlled differently, could be of collective benefit, and so on – have long been made about nuclear power, the second largest source of near-zero-carbon electricity after hydro power. But experience shows that nuclear’s scale has made it intrinsically anti-collective: in our hierarchical society, it has only been, and could only have been, developed by the state and large corporations. From where I am standing, SRM and CCS look much the same.

Take another technology that is in a sense both big and small: the internet. Its pioneers saw its huge democratic potential as a tool of communication, but as it has grown, under corporate and state control, it has become an instrument of state surveillance, corporate control and mind-bending marketing techniques.

For Buck, the internet of the early 2000s was “new and transformative, before we knew it would give us so many cat videos and listicles and trolls”. She appeals to critics of geoengineering, who “tend to locate the psychological roots of climate engineering in postwar, big science techno-optimism”, to think of it instead as “a phenomenon born of the early 2000s, a more globalist moment” (p. 44).

I do not recognise, in the early 2000s, this moment of hope for the internet or for “globalism”. The terrorist attack on the USA on 11 September 2001 marked the end of a desperate game of catch-up, played by US regulatory agencies against the Silicon Valley entrepreneurs: it prompted demands by the security agencies that the state’s focus shift from stopping the tech giants hoovering up information, to insisting they share that information with the state.

frage_3

The Boundary Dam carbon capture project in Saskatchewen, Canada, one of the small number of existing CCS projects

All restraints on the invasion of personal privacy were removed. In China, the state is now combining the same technologies with facial recognition software to take control over citizens to a new level. (Shoshana Zuboff writes about this in her book The Age of Surveillance Capitalism.)

A range of socialist writers from Andre Gorz onwards have theorised the way that technology is shaped by capitalism and can not be seen as inherently progressive. A new generation of technological determinists such as Alex Williams and Nick Srnicek, and Leigh Phillips, have offered a challenge to this tradition (which has left me completely unconvinced).

A serious discussion of geoengineering will necessarily be contextualised by consideration of these underlying issues about technology.

To my mind, socialist and collectivist politics can embrace “soft” and small technologies more easily than large ones, because they can more easily be used independently of structures of power and wealth. In many cases, e.g. electricity networks, we may well find ourselves advocating a combination of big and small technologies. But if we envisage socialism as a process that resists and eventually supercedes the state and big corporations, then in principle those technologies that can only be mobilised by the state and big corporations, such as nuclear power – and the big “hard” forms of geoengineering – present greater problems to us.

Which technologies? That’s a political battle

Buck argues that “a world patterned around carbon removal would be similar to one that’s committed itself to deep decarbonisation and extreme mitigation”, but had gone one step further. On the other hand, she writes that “regeneration, removal, restoration and so forth [her descriptive categories for a range of geoengineering techniques] bring a different narrative than mitigation, and perhaps a different politics”. It might be easier to “build a broader coalition around regeneration”, although, or perhaps because, “the goal is more drastic” (p 192).

To point to geoengineering advocacy as an alternative, preferable to mitigation (i.e. reduction of carbon emissions), carries a great danger of playing into the hands of corporate and government opponents of action.

Who, in the here and now, will comprise this “broader coalition” to consider geoengineering? According to Noah Deich of Carbon 180, who is quoted by Buck (p. 246):

[T]here’s the global Paris Agreement community [?], as well as energy, mining and agriculture, all of whom need to embrace carbon removal, ‘not as a scary transformation for their business, but really the natural evolution for where they need to go to increase prosperity. To serve their customers, employees, shareholders, all of these key stakeholders better. It needs to come from the top down.’

This version of geoengineering advocacy, which seeks to combine it with satisfying corporate needs to “serve stakeholders better”, scares me stiff. How can it be anything but craven greenwash?

Buck is not herself advocating such alliances. But she clearly sides with big and “hard” technologies against small, “soft” ones.

She derides supporters of regenerative agriculture for their “determined post-truth faith in soils”, which, she fears, “could contribute to a failure to invest in other technologies that are also needed for this gargantuan carbon removal challenge” (p. 116).

Why send more funds the way of big technologies? Already, “eco-system based approaches”, including afforestation and regenerative agriculture, only get 2.5% of global climate finance, Buck has reported a few pages earlier (p. 96).

Soft” afforestation and biochar, or “hard” CCS and SRM? Buck cites a research group headed by Detlef van Vuuren of Utrecht university in the Netherlands, who proposed that the 1.5 degrees C target could be met with minimal amounts of BECCS and other types of carbon dioxide removal. (Reported herefull article (restricted access) here.) They propose a larger programme of afforestation, and more rapid expansion of renewables-generated electricity, than in the IPCC scenarios. Van Vuuren and his colleagues also factor in lifestyle changes, including an overhaul of food processing towards lab-grown meat.

Buck is sceptical about the prospect of this “dramatic transformation”, as opposed to a focus on carbon removal – although she concludes that it should be “a vibrant matter of debate” (p. 109). And I agree with her there. But still more important is a related debate that is absent from her book: the potential of energy conservation, rather than carbon removal, in the fight against dangerous climate change, which has been downplayed in the IPCC’s reports for years.

By energy conservation I mean the overhaul of the big technological systems that wolf down fossil-fuel-produced energy. This involves other dramatic transformations: of industrial, transport and agricultural practices, and in the way people live – particularly in the cities of the global north where transport systems are based on cars (or, now, SUVs), people are encouraged to consume some goods (e.g. hamburgers) unhealthily and excessively, and live in heat-leaking, energy-inefficient buildings.

These transformations could not only forestall dangerous climate change, but also make lives better and more fulfilling.

An indication of energy conservation potential is provided by a group of energy specialists, headed by Arnalf Grubler of the International Institute for Applied Systems Analysis in Austria, who last year published a scenario suggesting that the 1.5 degree target, along with sustainable development goals, could be met entirely by energy conservation.

The point is not that one of these groups of technology researchers is 100% right as against another group. Rather, that to inform a serious discussion on these issues among people who are concerned about social justice and climate justice, we need to consider the relative advantages and disadvantages not only of different types of geoengineering, but of energy conservation measures too.

The best way to challenge corporations and governments is to make this discussion our own, rather than their property. Then we will be better armed in battles over political choices that we hope not only to influence, but to take into our hands. GL, 1 November 2019.

New version of nuclear briefing

An updated version is now available of our briefing on the dangers posed by the damaged Hunterston nuclear reactors and the reasons why nuclear power has no part to play in decarbonising the Scottish economy.  We’ve reproduced the text here and you can download the briefing from our resources page.

revised briefing 9 image

The two remaining nuclear power stations in Scotland can generate about a third of our electricity when in operation.  Hunterston B and Torness are ageing, in bad shape and well past their planned retirement dates.   This briefing explains why they pose a serious risk to public safety and why nuclear has no place in a sustainable energy policy.

Problems with AGRs

The Scottish nuclear reactors at Hunterston and Torness are both examples of what are known as Advanced Gas Cooled Reactors or AGRs.  Designed in the 1960’s, AGRs were built at seven sites around the UK between 1965 and 1988.  Hunterston was connected to the grid in 1976 with a design life of 30 years.  The reactors have had a consistently poor record.  To achieve high-energy efficiency they were designed to operate with very high temperatures in the reactor core.  This requires a very complicated reactor design.  The thousands of graphite blocks that make up the reactor core are critical to reactor safety.  However, the bolts that secure them are liable to corrode at the planned operating temperatures.  As a result the reactors have always been run at lower than designed temperatures ensuring that efficiency is sub optimal.

The big selling point of AGRs was that they were designed for continuous operation.  The idea was that the fuel rods and control rods that govern the rate of the nuclear reaction could be moved in and out of the reactor core while it remained in operation.  Again this was never achieved.  Expansion of the reactor core resulted in the channels for the fuel rods and control rods being distorted out of position.  Consequently the necessary precision of fuel rod and control rod insertion/extraction was never achieved and after a series of serious fuel rod jamming incidents, on load refuelling was abandoned.

A disaster waiting to happen?

However, the story of AGRs is not just about failure to achieve design objectives.  Graphite, which makes up the rector core, is a form of carbon. Subject to intense radiation it becomes brittle and prone to cracking.  The longer the reactor is in operation the worse this becomes.  Reactor 3 at Hunterston is currently offline because it’s estimated that there are 377 cracks in the reactor core. Reactor 4 has an estimated 209 cracks and has been allowed to run for 4 months up to December

To put this in context there are 3000 graphite blocks in each reactor. The latest report from the ONR (Office for Nuclear Regulation) warns that the cores are disintegrating with 58 fragments so far identified. This has huge implications for safety.

Hunterston B is 42 years old.  It was originally designed to operate for a maximum of 30 or 35 years and it is running beyond the original design safety limits.  With the ongoing crumbling of the reactor core. A sudden outage, steam surge or earth tremor could result in a serious accident and a large release of radioactive gas.  If other safety systems were to fail – and they are untested – there is a possibility of a catastrophic accident on the scale of Chernobyl.   The direction of the prevailing wind would take the radioactive plume across Glasgow, Edinburgh and most of the central belt.

Torness

Torness started producing electricity in 1988 and was scheduled to close in 2023. Owners, EDF Energy recently extended this date to 2030.  It shares problems of cracking in the graphite core with Hunterston and in addition has had to close down on several occasions in the last decade as a result of jellyfish and seaweed clogging the secondary seawater cooling systems.

We don’t need nuclear

In the past Scotland has generated an energy surplus.  In 1989 primary energy capacity in Scotland was 45% more than the level of demand.  The margins are now much narrower.  Reliance on ageing nuclear capacity rather than planning for non-nuclear green alternatives could result in a shortfall in supply in the future.  We can decarbonise through further development of wind, solar, wave and tidal energy. Nuclear is unnecessary, expensive, poses a high risk to health and wellbeing and only exists because it is essential to the nuclear arms programme.  Retention of current nuclear capacity is not only high risk but also acts as a barrier to the development of a long-term sustainable system of energy production.

Urgent need for action

EDF want to keep operating both reactors at Hunterston. They have redefined the ‘safe’ limit for the number of permitted cracks in the cores.   But the level of risk is just too high.  The Westminster Government and EDF are desperate to get Hunterston back on line.  Tory policy of building new reactors, rather than investing in renewables, is in tatters as first Toshiba and now Hitachi back out of new build in Cumbria and Wales.  The projected cost of energy from the planned Hinckley C reactor far exceeds the cost of wind and solar.

We need to see the end of nuclear as part of a shift to a sustainable economy.  The role of a national investment bank and a national energy company is crucial in making a rapid move to clean, safe energy.  In the process more than 100,000 new climate jobs could be created in Scotland.  While current discussion of these initiatives by the Scottish Government is welcome a much greater sense of urgency and a commitment to a climate jobs strategy is required.  Closing Hunterston can be step one in building the campaign is that’s required.

Stopping Oil and Gas Part 3

Daisy Jamieson was the third contributor to Scot.E3’s Glasgow public meeting on stopping North Sea oil and gas. In her talk Daisy reflected on the importance of just transition.  Part 1 of the public meeting can be viewed here and part 2 here.

Demand a Just Transition to renewable energy

One of the lead stories on the BBC today is the UK’s oil and gas industry assertion that the best response to tackling greenhouse gas emissions is to continue production at maximum levels.  Oil and Gas UK’s “Roadmap to 2035” argues consumption would remain above the levels they could produce. 

Neil Rothnie, life long offshore oil worker and activist, argues the case for an end to business as usual and a just transition out of hydrocarbon production in the North Sea.

Both the UK oil industry and Government seem to think that new licenses should be issued and oil and gas exploration on the North Sea stepped up.   The industry estimates that 20 billion bbls of fossil fuel remain under the North Sea.  No one in authority seems to think that these reserves should not be fully exploited.

This begs the questions;

If a policy of business as usual is to be applied to the North Sea, why then should Saudi Arabian, Gulf of Mexico, Venezuelan, Sakhalin, Nigerian and other hydrocarbon reserves not also be fully exploited?

What would the effect of producing all the world’s oil and gas be on global warming and climate change?

The Scottish Government seem to be prepared to try and lead us to an independent Scotland based on a carbon economy.  According to the First Minister, Scotland’s carbon emissions would increase if oil production from the North Sea was stopped. This only makes any kind of sense if there is to be no transition to a renewable energy system to replace fossil fuel from the North Sea.

Despite government complacency, the oil industry will come under increasing pressure – financial and political – to reduce and eventually end hydrocarbon production, though perhaps not till it’s too late to avoid catastrophic climate change if the politicians and industry leaders have their way.

The past practice of both oil industry and Government suggests that the workforce, offshore and onshore, will then be abandoned to their own devices, creating the sort of wilderness in the North East of Scotland that the UK coalfields became when there was no just transition from coal.  Energy workers and their families from all over the UK would then be very badly affected.  Though this time it looks as though they won’t suffer in isolation if climate science predictions are realised.

The unjust transition from coal wasn’t inevitable.  The miners and their families were punished for standing up to Thatcher’s plans to cripple organised labour. Offshore employers wanted anyone but ex-miners with their tradition of struggle, on the North Sea, and the unions failed to step up to the mark. This time it has to be different for everyone’s sake.
A just transition to renewable energy could be planned and enacted starting now.  New oil and gas exploration could immediately be stopped and a planned rundown of hydrocarbon production and a massive development of renewable resources begun now.

Not a penny of the oil windfall has so far been saved for the peoples of the UK.  Is it not now imperative that all (declining) oil profits must be immediately re-invested in developing the renewables energy sector?  Retraining of the oil industry workforce is a must where there is an expected skills gap in a much-expanded renewables sector.  The current oil and gas workforce can and should be re-deployed to replace the fossil fuel that we can no longer afford to produce.  Without a just transition to renewable energy from sun, wind and wave, we are fucked.

2018-07-19 08.57.05Our children and grandchildren deserve more from us than business as usual.  They and the rest of the remaining life on the planet need a chance of a future that does not include the misery of living through a global meltdown.

Climate Camp

We’ll be running a workshop at the XR Climate Campo at Holyrood on Monday evening (17th June), 7pm – it’s on ‘Climate jobs, just transition and building a movement with social justice at its heart’ – do come along if you can and in any case support the Climate Camp – on this week from this evening until Thursday.

47570064912_7c65f72a1b_z

Sea Change

This week has seen the publication of an important report on North Sea oil and gas.  ‘Sea Change – climate emergency, jobs and managing the phase-out of UK oil and gas extraction’.  The report is co-published by Platform, Oil Change International and Friends of the Earth Scotland. It finds that

  • The UK’s 5.7 billion barrels of oil and gas in already-operating oil and gas fields will exceed the UK’s share in relation to Paris climate goals – whereas industry and government aim to extract 20 billion barrels;
  • Recent subsidies for oil and gas extraction will add twice as much carbon to the atmosphere as the phase-out of coal power saves;
  • Given the right policies, job creation in clean energy industries will exceed affected oil and gas jobs more than threefold.

Recommendations to the UK and Scottish Governments include:

  • Stop issuing licenses and permits for new oil and gas exploration and development, and revoke undeveloped licenses;
  • Rapidly phase out all subsidies for oil and gas extraction, including tax breaks, and redirect them to fund a Just Transition;
  • Enable rapid building of the clean energy industry through fiscal and policy support to at least the extent they have provided to the oil industry, including inward investment in affected regions and communities;
  • Open formal consultations with trade unions to develop and implement a Just Transition strategy for oil-dependent regions and communities.

We hope to publish a longer review of the report in the near future.  However, in the meantime we strongly recommend downloading, reading and sharing the PDF.

2018-07-19 08.57.05

 

NFLA Seminar on just transition

On Friday 10th May I attended the Nuclear Free Local Authorities (NFLA) Scotland Spring Seminar in Dundee on behalf of Scot.E3. The subject of the seminar was ‘Dealing With Climate Change, Just Transition and Divestment Issues’.

The four presentations grappled with issues of just transition and sustainability from a local authority perspective:

You can use the hyperlinks to access the presentations. NFLA have also produced a useful briefing on some of these issues – ‘Climate Emergency’ Declarations and the practicalities in Local Authority Action to go ‘Carbon Neutral’

Eileen Cook

46798793304_28f8245813_z