Briefing #14: Climate, fuel poverty & the cost of living

Briefing #14 on climate, fuel poverty and the cost of living is now available for download. As with all the our briefings you are welcome to use and adapt the briefing content – attribution to https://scote3.net is appreciated.

The content of the briefing is reproduced below.

Climate, fuel poverty & the cost of living

Fuel poverty kills

Prior to the latest crisis almost 25% of households in Scotland lived in fuel poverty and just over 12% were in extreme fuel poverty.  Households in extreme fuel poverty are disproportionately represented in rural Scotland.  Older people living in rural Scotland are particularly hard hit. Every year thousands die because of fuel poverty – in 2018/19 excess winter mortality (that’s in comparison with the average winter mortality for the previous five years) was 2060 – the death toll can be more than twice as high in cold winters. Around 85% of households in the UK rely on gas for heating and cooking.  The huge hike in gas prices is going to make an already unacceptable situation much, much worse.  

Rising fuel prices

Gas and electricity prices have been rising faster than inflation for a long time.  From 2006 – 2016, Gas prices rose by 71% and Electricity 62%. Between 2017 and 2020 electricity prices increased by a further 8% in real terms while gas prices fell by a similar amount.  But gas prices are extremely volatile.  Since 2019 the wholesale price has almost trebled. 

Gas consumption fell by just over 2% in 2020, a consequence of lockdowns around the world.  In 2021 there was a rebound with consumption increasing by 4.6% because of increased economic activity and several extreme weather events worldwide.  The cost of producing gas is about the same this year as it was last year and the year before. So why has the price rocketed up?  Prior to 1987 the EU designated natural gas a premium fuel that should be reserved for home heating.  Now 60% of gas is used to generate electricity.  Britain used to have significant storage capability. This was abandoned in favour of allowing the market to deliver gas as needed.  These changes have been a disaster.  Gas is traded on the spot market with hedge funds gambling on future prices.  As a result, the cost of an essential utility is determined by a casino where traders rake in massive profits while consumers pay the price.

Lack of ambition

In June 2019 the Scottish Parliament passed a new act setting statutory targets for reducing fuel poverty.  Rightly it highlights the impact of fuel poverty on the most vulnerable in society. Low-income, high-energy costs, and poorly insulated housing result in the appalling situation where families, young people, elderly, disabled and many working people, cannot afford adequate warmth.  The new act sets interim targets for reducing fuel poverty to 15% of households by 2030 and final targets for 2040.  Considering the cost of living and climate crises we face this is too slow and not enough.   The act failed to address the threat posed by a chaotic market.  From April 2022 annual bills will increase by an average of almost £700.  Further increases are expected later in the year.  The numbers in fuel poverty are set to rise well above the current level.  

Fossil fuels cost the earth

Both Holyrood and Westminster remain committed to the maximum economic extraction of oil and gas from the North Sea. The big energy companies are making billions in extra profits out of the crisis.  North Sea oil and gas operates under a regime of very low taxation.  With prices high companies will be doubling down on plans to open new gas fields.  If this happens there is no chance of meeting the reductions in greenhouse gas emissions that are essential.  We argue that there are two essential steps.  The first is to protect all those who are in fuel poverty and stop more people joining them.  A windfall tax on profiteers will help with this but should not be mistaken for a long-term solution – and the scale of the problem is so large that it requires significant redistribution with higher taxes on the rich and much more support for the poor.  These are necessary short-term steps to prevent large scale misery, deprivation and increased winter deaths.  But a secure future for us all rests on gas being taken out of the market, with North Sea and North Atlantic oil and gas taken into public ownership and control.  With public control it then becomes possible to plan for the phase out of fossil fuels from the North Sea.  In the process we cut greenhouse gas emissions and replace expensive gas heating by cheaper renewables.  The interests of working people and the need to protect the planet are aligned.

A mass insulation campaign

In its ‘One Million Climate Jobs Pamphlet’, the Campaign Against Climate Change (CACC) notes that 

Three quarters of emissions from houses and flats … are caused by heating air and water. To reduce this we need to insulate and draught- proof the buildings, and replace inefficient boilers. This can cut the amount of energy used to heat the home and water by about 40% and delivers the double-whammy of reducing energy costs and helping mitigate the scourge of fuel poverty. 

Based on these CACC estimates, which are for the whole of the UK, a campaign to properly insulate all homes in Scotland would employ around 20,000 construction workers for the next 20 years.  This doesn’t account for additional jobs in education, training and manufacture that would spin off from such an endeavour.  Through this carbon dioxide emissions from homes would be cut by 95%.   We could ensure that all new houses are effectively carbon neutral.  The technology exists – there are examples of ‘passive houses’ that use very little energy.  Insulation together with the steady replacement of gas boilers by affordable heat pumps is the solution to cutting the energy demands of domestic heating. Hydrogen is not a solution (see Briefing #13).

Image by Pete Cannell CC0 Public Domain

New Technologies 

The current costs for fossil fuel power range from 4p -12p per kilowatt-hour. Inter renewable energy agency (IREA) state that renewable energy will cost 2p – 7p with the best onshore wind and solar photovoltaic projects expected to deliver electricity for 2p or less.  Renewable energy is necessary for a sustainable future, and it is cheaper than fossil fuels.  Current Westminster Government policy – notably the subsidy ban for new onshore wind farms – is impeding the shift to renewables. 

No Fracking

For the moment fracking is off the agenda in Scotland.  The result of a magnificent campaign of resistance.  But INEOS continues to import fracked gas from the US.  This has to stop.

In conclusion

Fuel Poverty and the cost-of-living crisis are the direct result of the “wrecking ball” of market forces dominating our need for energy to give us warmth, light and sustenance. In the pursuit of profit, the use of fossil fuels adds to the catastrophe of climate change.

We have the technology and skills to stop this madness and misery through a radical shift in Energy policy that would combine sustainable and renewable resources dedicated to social need.  Tackling climate change would go hand in hand with creating additional jobs, eliminating fuel poverty, and improving health and well-being.  To make this happen we need the kind of focus and the level of investment that has only normally applied at times of war.  Ending the use of fossil fuels over a short period is practically possible provided there is the political will.

Some of the material in this briefing also appears in Briefing #7 – Fuel Poverty

About Scot E3

Scot.E3 is a group of rank and file trade unionists, activists and environmental campaigners. In 2107 we made a submission to the Scottish Government’s Consultation on a Scottish Energy Strategy. Since then we have been busy producing and sharing leaflets and bulletins.

We believe there is a compelling case for a radical shift in energy policy. Looming over us there is the prospect of catastrophic climate change, which will wreck the future for our children and grandchildren.

We have the knowledge and the skills to make a difference to people’s lives in the here and now. A sustainable future requires a coherent strategy for employment, energy and the environment. We need a sense of urgency.  We need a coordinated strategy and massive public investment.

More on hydrogen, heating and the North Sea

The UK and Scottish governments both remain fully behind the North Sea Transition Deal, which envisages production of oil and gas continuing up to 2050 and beyond.  Hydrogen – initial produced from natural gas – is key to the strategy, and the assumption is that hydrogen will replace direct use of natural gas for home cooking and heating, the source of around 23% of the UK’s greenhouse gas emissions.  Hydrogen produced from gas is usually called ‘blue hydrogen’ and while burning hydrogen involves no emissions, the production of blue hydrogen involves the emission of large amounts of carbon dioxide.  

Image by PublicDomainPictures from Pixabay

The case against the strategy is growing apace.  Back in August 2021 Chris Jackson, the chair of the UK Hydrogen and Fuel Cell Association (UKHFCA) resigned just days before the publication of the Westminster government’s hydrogen strategy.  He stated: 

“I believe passionately that I would be betraying future generations by remaining silent on that fact that blue hydrogen is at best an expensive distraction, and at worst a lock-in for continued fossil fuel use that guarantees we will fail to meet our decarbonisation goals.”

Last week we posted on the findings of research by the Imperial College Energy Futures Lab comparing hydrogen and heat pumps for domestic heating.  The report recommended that hydrogen will be important in decarbonising some specific industrial and transport processes but should not be used for domestic heating. Now MPs on the Westminster Business, Energy and Industrial Strategy Committee have come to the same conclusion.  The committee’s report slates the government for the lack of clarity in phasing out domestic gas boilers.  It argues that hydrogen is not a practical or sustainable solution. And it condemns the lack of urgency shown by the government in organising for and supporting viable alternatives such as heat pumps and district schemes.

We should be clear that despite the evidence to contrary the hydrogen-based strategy for home heating – while driven by the oil and gas industry – remains the policy option preferred by Westminster, Holyrood and some of the major unions.  Now’s the time for climate activists in workplaces to insist that unions need to rethink and for of all us to get behind a campaign to phase out North Sea Oil and Gas and end all the attempts to pretend that a net zero oil and gas basin (the purported aim of the North Sea Transition Deal)  is possible.

Check out the Scot.E3 briefing for more on this topic.

The future for home heating

Yesterday (27th January 2022 saw the launch of a new report weighing up the relative merits of hydrogen and heat pumps for domestic heating.  The report was produced by the Imperial College Energy Futures Lab.  It concludes that while hydrogen will have a role in decarbonising some industrial process it is not appropriate for domestic heating. 

The research finds that hydrogen infrastructure is not going to be viable for domestic heating applications at scale for at least the next 10 years and therefore, the Government should focus on deploying solutions which are available now including energy efficiency, electrification through heat pumps and heat networks as the main focus for its strategy. 

Richard Hanna one of the reports authors says:

… hydrogen has potential to help decarbonize challenging sectors like industry and shipping but right now there is not a strong case for using it to here in our homes. In the near-term government should focus efforts on improving heat pump products and their affordability and supporting industry to rapidly scale up production of technology in the UK

Scot.E3 argues that current UK and Scottish government support hydrogen as a replacement for natural gas is deeply misguided and is unlikely to be effective in cutting carbon emissions.  This really matters since domestic heating is responsible for around 23% of the UK’s greenhouse gas emissions.  The UK is currently very dependent on the use of natural gas for domestic heating.  Around 85% of homes use gas. One consequence of this heavy dependence is the ratchetting up of levels of fuel poverty because of the massive hike in gas prices that has occurred over the last few months.  

The report is well worth reading and includes a really useful and extensive list of links to further reading.  Butven if you don’t have time to read the report in full, do read the policy recommendations.  These highlight the need for public sector procurement, for planning, for rapidly increasing the rate of heat pump installation starting from now and critically for immediate investment in training to create a skilled workforce able to carry out this work.

This is the video of the meeting at which the report was launched.

Trask, A., Hanna, R. and Rhodes, A. The Future of Home Heating: the Roles of Heat Pumps and Hydrogen, An Energy Futures Lab Briefing Paper, Imperial College London Consultants. Available at: https://www.imperial.ac.uk/energy-futures-lab/reports/ briefing-papers/paper-8/ 

Hydrogen for homes is a terrible idea. We should fight it

We’re pleased to be able to repost this article by Gabriel Levy which was first published on the People and Nature blog. Do check out the People and Nature site which has a wealth of useful and informative resources and follow the site on Twitter @peoplenature

A plan to pipe hydrogen, instead of natural gas, to millions of UK households is being pushed hard by the fossil fuel industry. It sounds “green” – but could wreck efforts to make homes truly zero carbon, using insulation and electric heat pumps.

Oil and gas companies support switching the gas grid to hydrogen, as a survival option in case of decarbonisation, as hydrogen is usually fabricated from gas.

But the hydrogen strategy cuts across the approach recommended for years by housing policy wonks and architects: to use insulation to slash the amount

The gas grid: better to replace it with heat pumps. Photo by Ran-Allen / Creative Commons

of heat needed, and install electric pumps (which work like fridges in reverse).

Leeds Trades Union Council (TUC) last month launched a campaign in favour of retrofitting homes with high-quality insulation and heat pumps.

It’s an issue many people can unite around – those fighting for better housing and tenants’ rights, campaigners against fuel poverty, trades unionists fighting building industry cuts, and all of us who want to tackle climate change.

And there’s a choice to be made we cannot avoid.

If the gas grid is switched to hydrogen, that will block for good the electrification-and insulation approach, that heats homes better, more cheaply, with technology that we know works, and is truly zero-carbon. We cannot have it both ways.

We will be locked into extra dependency on fossil fuels, instead of speeding the shift away from them.

That gas-to-hydrogen switch is being planned in north-east England by Northern Gas Networks (NGN): its H21 project would convert 3.7 million homes and businesses by 2035, and 15.7 million by 2050. NGN is asking the government to fund an engineering study for it.

This article is a guide to the debates and to more information. It covers:

  • hydrogen and its drawbacks;
  • whole system solutions: existing technologies to decarbonise heating
  • the government’s no-strategy strategy and how we could resist it; and
  • industry lobbying.

There is a short appendix with a non-technical guide to the technologies.

Hydrogen and its drawbacks 

Hydrogen is touted as a “green” fuel internationally, because governments seek industry-friendly paths to decarbonisation, and oil and gas companies offer this false solution.

The International Energy Agency (IEA) last year published a report on hydrogen, which noted active support for it by the Chinese, Brazilian, Indian, Australian and many European governments.

In July this year, the European Commission published its “hydrogen strategy for a climate-neutral Europe”, which advocates state support for hydrogen to replace gas in industry and transport – but also mentions household heating as a possible use, as does the European Hydrogen Alliance’s declaration.

Much of this is based on a totally unproved assumption: that technology to produce zero-carbon hydrogen can be made to work at scale. That is a long way off, and may never happen. 

There are two supposedly carbon-free types of hydrogen: “blue” hydrogen made from natural gas, from which the carbon is removed and stored; and “green” hydrogen made by electrolysing water. Neither has ever been used at large scale.

At the moment, about 70 million tonnes of hydrogen is produced per year globally, and 98% of it is “grey” hydrogen, made from natural gas … without carbon capture. So it emits a huge amount of greenhouse gases – almost as much as the aviation industry. (See below for more details on the technologies.)

Large-scale “blue” or “green” hydrogen production is far away for three types of reasons.

  1. Cost. The European Commission estimates that “blue” hydrogen would cost €2 a kilogramme at today’s prices, and “green” hydrogen €2.50-€5.50/kg, compared to €1.50/kg for existing “grey” hydrogen.
  2. Technology. “Blue” hydrogen needs carbon capture and storage (CCS) technology that does not yet work at scale anywhere. Transporting hydrogen might not be the walk in the park that some companies claim, either, this presentation suggests.
  3. Resource use. “Green” hydrogen uses huge quantities of electricity and water.

Take the NGN project. It would by 2050 need 8 million tonnes of hydrogen per year, equivalent to 300 Terawatt hours (TWh) of electricity.

To supply that amount of “green” hydrogen, Friends of the Earth says,would need 140 Gigawatts (GW) of wind-powered electrolyser capacity – compared to a current total UK wind capacity of 22 GW (which supplies about one fifth of


The Sun in hydrogen light … but on earth, the hydrogen has to be released from compounds. Photo from the Science Museum

the UK’s electricity). Plus the same amount of water as is used by 1.2 million homes.

If “blue” hydrogen were used instead, 60 plants, as big as the world’s biggest, would have to be built … fitted with that CCS technology that is still in development.

I am not arguing that hydrogen – especially “green” hydrogen – could never be used, during and after the transition away from fossil fuels. But now, it is not a priority or a game-changer.

Today, most hydrogen is used in oil refining and fertiliser manufacture. Hopefully, much of this current use will disappear, along with fossil-fuelled industries. There may well be new uses, because low- or zero-carbon hydrogen might be the best substitute for fossil fuels e.g. to make steel. Hydrogen is also good for storing energy.

But why, in any sane world, would you start by searching for new ways to use hydrogen, as governments are trying to do now?

Why would you even think about using hydrogen to heat people’s homes – when technologies that work, that are already in use (retrofitting, electricity and heat pumps) could do the job better?

You wouldn’t.

Unless you were seeking ways of wringing the last few bits of profit out of oil and gas production.

Whole-systems solutions: existing technologies can decarbonise heating

There is nothing radical about proposing insulation and electric heat pumps to replace gas for households. Recent reports by the Institute for Public Policy Research (advocating a national investment programme), Friends of the Earth (reiterating the value of heat pumps against hydrogen) and the Carbon Trust (on London, arguing that “heat pumps are the primary technology choice”) make the case. For a working retrofitter’s view, see the Sure Insulation site.

Government and parliamentary reviews, too, have found that heat pumps and insulation are the way to go. (They have also looked at a hybrid heat pump system, in which a heat pump provides heat for 85% of the time, but switches to a gas boiler during colder periods.)

The government’s business and industry department (BEIS) did a big review of home heating options in 2018. It concluded that, first, there should be a “growth in no or low-regrets low carbon heating” measures, including heat pumps, biomass boilers and solar water heaters. But BEIS said that, long term, all technologies had to be looked at – and kept the hydrogen option open, by commissioning the engineering company Arup to do a feasability study.

The parliamentary Committee on Climate Change also did a big study on hydrogen in 2018, and concluded that it is “best used selectively, where it adds most value alongside widespread electrification” – and providing CCS could be got to work properly. Most urgent, the CCC pointed out, is “strategic certainty about how the decarbonisation of heat will be delivered in the UK”.

(The detailed analysis for the CCC was done at Imperial College. It showed that a hydrogen-based approach would be more expensive, especially if the aim were zero carbon, and that up-front investment makes more sense to stop emissions. There is more from Imperial on “smart and flexible heat” here.)

All this paperwork underlines that an integrated approach is needed. Buildings need to be upgraded and insulated; different types of heat pumps and different installation methods are called for; expertise and training have to be developed; in some areas, district heating networks make sense.

This is exactly the sort of thing local government has always done, and the neo-liberal assault on local government makes it harder. That’s discussed in research of heat systems governance by Janette Webb (see her articles including “New Lamps for Old”“Emerging linked ecologies for a national-scale retrofitting programme” and one on why heat decarbonisation cannot be done by markets).

The no-strategy strategy, and how to oppose it

In the face of this pile of evidence that, more than anything, home heating needs a strategy – the government has avoided adopting a strategy. It “has yet to make any firm decisions about which pathways it prefers”, this report on the Renewable Technology site explained in July.

The politics of this is very clear.

In the face of climate crisis, the government must choose between an integrated strategy, best implemented through local government, relying on existing technology … or a no-strategy strategy that takes the lead

Insulation works, and it cuts down the need for heat

from powerful private companies with unproven technology.

The no-strategy strategy fits with this government’s maniacal, neoliberal hatred of the public sector – one of its few ideological principles. That was what motivated its no-strategy strategy on coronavirus testing and tracing, with devastating results, costing tens of thousands of lives.

A heat decarbonisation strategy will have to be fought for in opposition to the government – just as health workers, scientists and others have had to fight for a coronavirus strategy.

This is why the Leeds TUC initiative, which appeals to local government to act, is welcome.

The Leeds TUC has recognised a techno-fix for what it is – damaging to society and the labour movement. Its campaign could be a focus for all who want to tackle dangerous climate change.

If you are in a trade union, an environmental campaign group or a community organisation, please discuss the Leeds TUC’s document and the actions it proposes.

If you are in a union, you could challenge trade union leaders’ support for the oil and gas industry’s hydrogen initiative.

Instead of such support, the labour movement should:

First, embrace technologies that are in society’s best interests – which for heat decarbonisation means retrofitted insulation and heat pumps;

Second, demand that firms producing filthy-dirty “grey” hydrogen take action to reduce the horrendous levels of greenhouse gas emissions they produce; and

Third, urge that future hydrogen use be limited to applications that are socially useful and don’t add to the climate crisis.

This approach could and should be part of a broader perspective of just transition, now starting to be discussed by workers on the North Seawhere the gas is produced.

Lobbying on steroids

The H21 project is at a crossroads. The companies who sponsor it – NGN, the gas network firm Cadent and the Norwegian oil company Equinor – got state funding for a series of initial reports: £9 million from the Ofgem Network Innovation Competition (NIC) in 2017, mainly to fund safety assessments; and another £6.8 million in 2019 to test the technology at a specially-built site at Spadeadam. (Update from a H21 manager here.)

But H21’s plea for a much larger dollop of state funding – £125 million, half the cost of a Front End Engineering and Design (FEED) study, originally scheduled to start this year – has not so far been heeded, despite the “urgency” explained in the H21 North of England report (available here, although temporarily (October 2020) missing).

Meanwhile, the government has announced another project – to support an industrial complex on Teesside, making “blue” hydrogen for transport – that could be an alternative source of demand for natural gas being pumped from the North Sea … and has as little as H21 to do with tackling the climate emergency.

Despite the question marks over H21, the oil and gas industry’s lobbying machine in support of hydrogen for heat decarbonisation is trundling on, with greater force than ever.

In July, the All Party Parliamentary Group on Hydrogen issued a reporturging “more ambitious” support for hydrogen, including “mandating hydrogen-ready boilers by 2025”.

And in August, the gas industry “scored a success in persuading the Environmental Audit Committee [of the House of Commons] to back its plans for using hydrogen […] in domestic heating”, the 100% Renewable UK blog reported.

The committee chair, Philip Dunne MP, deceitfully suggested that hydrogen is “the most cost-effective option” for “parts of the UK energy system”.

Tom Baxter, a chemical engineering researcher, questions the pro-hydrogen arguments in this article.

Gas network companies have also jumped on the post-Covid financing bandwagon, asking for a huge state hand-out for conversion to hydrogen. And cement manufacturers – who, like energy companies, need carbon capture and storage – have joined the queue for state funding.

These relentless lobbying efforts are funded by a range of companies including hydrogen, transport, carbon capture, gas network, engineering and chemical firms as well as oil and gas. Their greenwash proliferates through the Decarbonised Gas Alliance and Hydrogen Strategy Now.

Some good research on these lobbyists’ methods, by academics at Exeter University and Imperial College, warns of “the capacity that incumbents have to promote their storyline”.

Hydrogen. Quick technological catch-up  

Hydrogen is the most common, and lightest, element in the universe, but only exists on earth combined with other elements. People started fabricating hydrogen from compounds and using it e.g. for balloons in the nineteenth century. Today there are three main types of hydrogen:

■ “Grey” hydrogen. Fabricated by removing the hydrogen (H) from methane i.e. natural gas (CH4), or from coal. This is how 98% of hydrogen is currently made. It is extremely emissions-intensive. For every tonne of hydrogen made from gas, 10 tonnes of carbon dioxide (CO2) goes into the atmosphere;

The Petra Nova carbon capture and storage plant, recently mothballed. Photo by RM VM (creative commons)

hydrogenfor every tonne from coal, 19 tonnes of CO2.

The 70m tonnes of hydrogen produced in 2018 caused 830m tonnes of CO2 emissions, the IEA calculated. That’s a healthy chunk of the world total of 42 billion tonnes – about  the same as total emissions from Indonesia plus the UK – and nearly as much as the global aviation industry, which emitted 915m tonnes in 2019.

Most hydrogen produced now is used for oil refining, and ammonia production to make chemical fertilisers. Some is used as part of synthetic gas products, mainly for manufacturing steel, or methanol.

■ “Blue” hydrogen. In this process, instead of CO2 being emitted into the atmosphere, it is captured and stored. The capture process, steam reformation, is straightforward for about 70% of the emissions and gets really tricky above and beyond about 85%.

Steam reformation splits methane into CO2 and synthetic gas (carbon monoxide plus hydrogen); in the second stage, the synthetic gas is mixed with steam; more CO2 is removed and hydrogen produced. Other similar processes are partial oxidation, which uses oxygen in the air as an oxidant instead of steam, and autothermal reforming, which combines both methods.

Note on carbon capture and storage. This can also be used in gas- and coal-fired power stations. Usually the carbon is captured after the fuel has been burned. Then, as with carbon from hydrogen production, it has to be transported and stored. CCS has been in development for about 40 years, but there are still only 20 projects in development in the world. Only two of these ever actually functioned, and one of those two (Petra Nova in Texas) was mothballed in August. (A good analysis is here.) CCS is greenwashed as the key to “green power”. Some politicians, and some international climate talks documentation, claim that bioenergy with CCS could play a big role in global decarbonisation, but climate scientists and engineers think that is nonsense.

■ “Green” hydrogen. Produced by electrolysis of water. The electricity could come from fossil fuels (in which case it would not be green), nuclear power or renewables. The process is proven, but is very energy intensive and very inefficient.

If electricity from renewables were to be used, this could be the most “carbon light” way of producing hydrogen. But huge targets for “green” hydrogen production are sometimes published without being reconciled with other huge targets for renewably-produced electricity. Is producing hydrogen ever going to be the best way to use this electricity? The IEA says that just to produce the 70m tonnes of hydrogen the world economy uses annually would need 3600 TWh of electricity, more than total European consumption. The electrolysis also needs huge amounts of water – 9 litres for each kilo of hydrogen.

Gazprom, the Russian gas company, sees potential in producing hydrogen by methane pyrolysis, a related technology. GL, 30 October 2020.

Find out more about the Leeds TUC initiative:

■ Retrofit Leeds homes with high-quality insulation and heat pumps:  a plan and call to action, by Leeds TUC

■ Leeds trade unionists: zero carbon homes can help tackle climate change, by People & Nature

Decarbonising our heating systems

Leeds TUC’s Environmental sub-committee held a webinar recently on ‘Alternative ways to decarbonise our heating systems’ – the video includes a lot of useful information and some sharp critique of the idea that’ blue hydrogen’ could be a way forward.

Thanks to Les Levidov for the link